Meta4meaning: Automatic Metaphor Interpretation Using Corpus-Derived Word Associations
نویسندگان
چکیده
We propose a novel metaphor interpretation method, Meta4meaning. It provides interpretations for nominal metaphors by generating a list of properties that the metaphor expresses. Meta4meaning uses word associations extracted from a corpus to retrieve an approximation to properties of concepts. Interpretations are then obtained as an aggregation or difference of the saliences of the properties to the tenor and the vehicle. We evaluate Meta4meaning using a set of humanannotated interpretations of 84 metaphors and compare with two existing methods for metaphor interpretation. Meta4meaning significantly outperforms the previous methods on this task.
منابع مشابه
Token-Level Metaphor Detection using Neural Networks
Automatic metaphor detection usually relies on various features, incorporating e.g. selectional preference violations or concreteness ratings to detect metaphors in text. These features rely on background corpora, hand-coded rules or additional, manually created resources, all specific to the language the system is being used on. We present a novel approach to metaphor detection using a neural ...
متن کاملAsymmetry in Corpus-Derived and Human Word Associations
We investigate asymmetry in corpus-derived and human word associations. Most prior work has studied paradigmatic relations, either derived from free association norms or from large corpora using measures of statistical association and semantic relatedness. By contrast, we investigate the syntagmatic relation between words in adjective-noun and noun-noun combinations and present a new experiment...
متن کاملModels of Metaphor in NLP
Automatic processing of metaphor can be clearly divided into two subtasks: metaphor recognition (distinguishing between literal and metaphorical language in a text) and metaphor interpretation (identifying the intended literal meaning of a metaphorical expression). Both of them have been repeatedly addressed in NLP. This paper is the first comprehensive and systematic review of the existing com...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملThe Meaning of Syntactic Dependencies
This paper discusses the semantic content of syntactic dependencies. We assume that syntactic dependencies play a central role in the process of semantic interpretation. They are defined as selective functions on word denotations. Among their properties, special attention will be paid to their ability to make interpretation co-compositional and incremental. To describe the semantic properties o...
متن کامل